16,928 research outputs found

    Thermodynamic evidence for pressure-induced bulk superconductivity in the Fe-As pnictide superconductor CaFe2As2

    Full text link
    We report specific-heat and resistivity experiments performed in parallel in a Bridgman-type of pressure cell in order to investigate the nature of pressure-induced superconductivity in the iron pnictide compound CaFe2As2. The presence of a pronounced specific-heat anomaly at Tc reveals a bulk nature of the superconducting state. The thermodynamic transition temperature differs dramatically from the onset of the resistive transition. Our data indicates that superconductivity occurs in the vicinity of a crystallographic phase transition. We discuss the discrepancy between the two methods as caused by strain-induced superconducting precursors formed above the bulk thermodynamic transition due to the vicinity of the structural instability

    Electron-doped phosphorene: A potential monolayer superconductor

    Full text link
    We predict by first-principles calculations that the electron-doped phosphorene is a potential BCS-like superconductor. The stretching modes at the Brillouin-zone center are remarkably softened by the electron-doping, which results in the strong electron-phonon coupling. The superconductivity can be introduced by a doped electron density (n2Dn_{2D}) above 1.3×10141.3 \times10^{14} cm2^{-2}, and may exist over the liquid helium temperature when n2D>2.6×1014n_{2D}>2.6 \times10^{14} cm2^{-2}. The maximum critical temperature is predicted to be higher than 10 K. The superconductivity of phosphorene will significantly broaden the applications of this novel material

    Numerical simulation of solid tumor blood perfusion and drug delivery during the “vascular normalization window” with antiangiogenic therapy

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Hindawi PublishingTo investigate the influence of vascular normalization on solid tumor blood perfusion and drug delivery, we used the generated blood vessel network for simulations. Considering the hemodynamic parameters changing after antiangiogenic therapies, the results show that the interstitial fluid pressure (IFP) in tumor tissue domain decreases while the pressure gradient increases during the normalization window. The decreased IFP results in more efficient delivery of conventional drugs to the targeted cancer cells. The outcome of therapies will improve if the antiangiogenic therapies and conventional therapies are carefully scheduled
    corecore